3D Computation of Gray Level Co-occurrence in Hyperspectral Image Cubes
نویسندگان
چکیده
This study extended the computation of GLCM (gray level co-occurrence matrix) to a three-dimensional form. The objective was to treat hyperspectral image cubes as volumetric data sets and use the developed 3D GLCM computation algorithm to extract discriminant volumetric texture features for classification. As the kernel size of the moving box is the most important factor for the computation of GLCMbased texture descriptors, a three-dimensional semi-variance analysis algorithm was also developed to determine appropriate moving box sizes for 3D computation of GLCM from different data sets. The developed algorithms were applied to a series of classifications of two remote sensing hyperspectral image cubes and comparing their performance with conventional GLCM textural classifications. Evaluations of the classification results indicated that the developed semi-variance analysis was effective in determining the best kernel size for computing GLCM. It was also demonstrated that textures derived from 3D computation of GLCM produced better classification results than 2D textures.
منابع مشابه
Three Dimensional Texture Computation of Gray Level Co-occurrence Tensor in Hyperspectral Image Cubes
The traditional gray level co-occurrence matrix (GLCM) is in two-dimensional form. Because hyperspectral imagery in the feature space has the characteristic of volumetric data, it has a great potential for three-dimensional texture analysis. Previous studies have successfully extended traditional 2D GLCM to a 3D form (Gray Level Co-occurrence Matrix for Volumetric Data, GLCMVD) for extracting f...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملHyperspectral image classification based on volumetric texture and dimensionality reduction
A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural features were extracted by volumetric gray-level co-occurrence matrices (VGLCM). The spectral features were extracted by minimum estimated abundance covariance (MEAC) and linear prediction (LP)-based band selection, and a semi-...
متن کاملTarget detection in multispectral images using the spectral co-occurrence matrix and entropy thresholding
Considerable use is being made of multispectral and hyperspectral data for many applications. As imaging spectrometer sensors become more available and collect larger image cubes, the task of processing the data can become time consuming and complex. Techniques to segment targets from background based on the relative entropy of the probability distribution of a spatial co-occurrence matrix of t...
متن کامل